Partitioning of NaPi cotransporter in cholesterol-, sphingomyelin-, and glycosphingolipid-enriched membrane domains modulates NaPi protein diffusion, clustering, and activity.
نویسندگان
چکیده
In dietary potassium deficiency there is a decrease in the transport activity of the type IIa sodium/phosphate cotransporter protein (NaPi) despite an increase in its apical membrane abundance. This novel posttranslational regulation of NaPi activity is mediated by the increased glycosphingolipid content of the potassium-deficient apical membrane. However, the mechanisms by which these lipids modulate NaPi activity have not been determined. We determined if in potassium deficiency NaPi is increasingly partitioned in cholesterol-, sphingomyelin-, and glycosphingolipid-enriched microdomains of the apical membrane and if the increased presence of NaPi in these microdomains modulates its activity. By using a detergent-free density gradient flotation technique, we found that 80% of the apical membrane NaPi partitions into the low density cholesterol-, sphingomyelin-, and GM1-enriched fractions characterized as "lipid raft" fractions. In potassium deficiency, a higher proportion of NaPi was localized in the lipid raft fractions. By combining fluorescence correlation spectroscopy and photon counting histogram methods for control and potassium-deficient apical membranes reconstituted into giant unilamellar vesicles, we showed a 2-fold decrease in lateral diffusion of NaPi protein and a greater than 2-fold increase in size of protein aggregates/clusters in potassium deficiency. Our results indicate that NaPi protein is localized in membrane microdomains, that in potassium deficiency a larger proportion of NaPi protein is present in these microdomains, and that NaPi lateral diffusion is slowed down and NaPi aggregation/clustering is increased in potassium deficiency, both of which could be associated with the decreased Na/Pi cotransport activity in potassium deficiency.
منابع مشابه
Differential regulation of the renal sodium-phosphate cotransporters NaPi-IIa, NaPi-IIc, and PiT-2 in dietary potassium deficiency
Dietary potassium (K) deficiency is accompanied by phosphaturia and decreased renal brush border membrane (BBM) vesicle sodium (Na)-dependent phosphate (P(i)) transport activity. Our laboratory previously showed that K deficiency in rats leads to increased abundance in the proximal tubule BBM of the apical Na-P(i) cotransporter NaPi-IIa, but that the activity, diffusion, and clustering of NaPi-...
متن کاملDifferential Regulation of the Renal 1 Sodium / Phosphate Co - Transporters NaPi - IIa , NaPi - IIc 2 and PiT - 2 in Dietary Potassium Deficiency 3
25 Dietary potassium (K)-deficiency is accompanied by phosphaturia, and decreased renal 26 brush border membrane (BBM) vesicle sodium (Na)-dependent phosphate (Pi) transport 27 activity. We previously showed that K-deficiency in rats leads to increased abundance in 28 the proximal tubule BBM of the apical Na/Pi co-transporter NaPi-IIa, but that the activity, 29 diffusion and clustering of NaPi-...
متن کاملCloning of a Na/Pi cotransporter from opossum kidney cells.
Opossum kidney (OK) cells have been extensively used to study cellular mechanisms of renal proximal tubular Na/P(i) cotransport. We have cloned a cDNA (NaPi-4) most likely encoding an apical Na/P(i) cotransporter from OK cells. The cloning strategy was based on homology to the recently cloned human renal (NaPi-3) Na/P(i) cotransporter (Magagnin, S., Werner, A., Markovich, D., Sorribas, V., Stan...
متن کاملGABARAP deficiency modulates expression of NaPi-IIa in renal brush-border membranes.
Renal reabsorption of inorganic phosphate (P(i)) is mainly mediated by the Na(+)-dependent P(i)-cotransporter NaPi-IIa that is expressed in the brush-border membrane (BBM) of renal proximal tubules. Regulation and apical expression of NaPi-IIa are known to depend on a network of interacting proteins. Most of the interacting partners identified so far associate with the COOH-terminal PDZ-binding...
متن کاملRegulation of intestinal NaPi-IIb cotransporter gene expression by estrogen.
The current experiments were designed to study the effect of beta-estradiol on type IIb sodium-coupled phosphate (NaPi-IIb) cotransporter gene expression. Uptake studies with intestinal brush-border membrane vesicles (BBMV) showed that estrogen treatment increased sodium-dependent phosphate absorption by approximately 45% in rat intestine. Northern blot analysis indicated that NaPi-IIb mRNA exp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 279 47 شماره
صفحات -
تاریخ انتشار 2004